Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 76(10): 1854-1859, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20240001

ABSTRACT

This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics/prevention & control , World Health Organization , Societies
3.
Build Environ ; 206: 108387, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1433013

ABSTRACT

A new design method is proposed to calculate outdoor air ventilation rates to control respiratory infection risk in indoor spaces. We propose to use this method in future ventilation standards to complement existing ventilation criteria based on the perceived air quality and pollutant removal. The proposed method makes it possible to calculate the required ventilation rate at a given probability of infection and quanta emission rate. Present work used quanta emission rates for SARS-CoV-2 and consequently the method can be applied for other respiratory viruses with available quanta data. The method was applied to case studies representing typical rooms in public buildings. To reduce the probability of infection, the total airflow rate per infectious person revealed to be the most important parameter to reduce the infection risk. Category I ventilation rate prescribed in the EN 16798-1 standard satisfied many but not all type of spaces examined. The required ventilation rates started from about 80 L/s per room. Large variations between the results for the selected case studies made it impossible to provide a simple rule for estimating the required ventilation rates. Consequently, we conclude that to design rooms with a low infection risk the newly developed ventilation design method must be used.

5.
Indoor Air ; 31(2): 314-323, 2021 03.
Article in English | MEDLINE | ID: covidwho-796060

ABSTRACT

During the 2020 COVID-19 pandemic, an outbreak occurred following attendance of a symptomatic index case at a weekly rehearsal on 10 March of the Skagit Valley Chorale (SVC). After that rehearsal, 53 members of the SVC among 61 in attendance were confirmed or strongly suspected to have contracted COVID-19 and two died. Transmission by the aerosol route is likely; it appears unlikely that either fomite or ballistic droplet transmission could explain a substantial fraction of the cases. It is vital to identify features of cases such as this to better understand the factors that promote superspreading events. Based on a conditional assumption that transmission during this outbreak was dominated by inhalation of respiratory aerosol generated by one index case, we use the available evidence to infer the emission rate of aerosol infectious quanta. We explore how the risk of infection would vary with several influential factors: ventilation rate, duration of event, and deposition onto surfaces. The results indicate a best-estimate emission rate of 970 ± 390 quanta/h. Infection risk would be reduced by a factor of two by increasing the aerosol loss rate to 5 h-1 and shortening the event duration from 2.5 to 1 h.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Singing , Ventilation/methods , Fomites/virology , Humans , SARS-CoV-2 , Time Factors , Washington/epidemiology
6.
Environ Int ; 142: 105832, 2020 09.
Article in English | MEDLINE | ID: covidwho-381748

ABSTRACT

During the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced about routes of transmission for this pandemic disease. Inhaling small airborne droplets is probable as a third route of infection, in addition to more widely recognized transmission via larger respiratory droplets and direct contact with infected people or contaminated surfaces. While uncertainties remain regarding the relative contributions of the different transmission pathways, we argue that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors. Appropriate building engineering controls include sufficient and effective ventilation, possibly enhanced by particle filtration and air disinfection, avoiding air recirculation and avoiding overcrowding. Often, such measures can be easily implemented and without much cost, but if only they are recognised as significant in contributing to infection control goals. We believe that the use of engineering controls in public buildings, including hospitals, shops, offices, schools, kindergartens, libraries, restaurants, cruise ships, elevators, conference rooms or public transport, in parallel with effective application of other controls (including isolation and quarantine, social distancing and hand hygiene), would be an additional important measure globally to reduce the likelihood of transmission and thereby protect healthcare workers, patients and the general public.


Subject(s)
Air Microbiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Aerosols , Betacoronavirus , COVID-19 , Crowding , Disinfection/instrumentation , Filtration , Humans , Inhalation Exposure , SARS-CoV-2 , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL